AG尊龙 AGzunlong 分类>>
AG尊龙凯时- 尊龙凯时官方网站- APP下载《麻省理工科技评论》万字长文:什么是人工智能?
尊龙凯时官网,尊龙凯时,AG尊龙凯时,尊龙娱乐,尊龙体育,尊龙凯时人生就是搏,尊龙凯时体育,尊龙凯时平台,ag尊龙,尊龙平台,尊龙,尊龙官网,尊龙登录入口,尊龙官方网站,尊龙app下载,尊龙凯时APP下载尊龙凯时官网,尊龙凯时,AG尊龙凯时,尊龙娱乐,尊龙体育,尊龙凯时人生就是搏,尊龙凯时体育,尊龙凯时平台,ag尊龙,尊龙平台,尊龙,尊龙官网,尊龙登录入口,尊龙官方网站,尊龙app下载,尊龙凯时APP下载尊龙凯时官网,尊龙凯时,AG尊龙凯时,尊龙娱乐,尊龙体育,尊龙凯时人生就是搏,尊龙凯时体育,尊龙凯时平台,ag尊龙,尊龙平台,尊龙,尊龙官网,尊龙登录入口,尊龙官方网站,尊龙app下载,尊龙凯时APP下载
回溯至 2022 年,在《神秘 AI 炒作剧场 3000》这一档略显扫兴的播客首集的中途——该播客由易怒的联合主持人 Alex Hanna 和 Emily Bender 主持,他们乐此不疲地用“最锋利的针”刺向硅谷一些最被吹捧的神圣不可侵犯的事物中——他们提出了一个荒谬的建议。当时,他们正在大声朗读 Google 工程副总裁 Blaise Agüera y Arcas 在 Medium 上发表的一篇长达 12,500 字的文章,题为《机器能学会如何表现吗?》。Agüera y Arcas 认为,人工智能能够以某种与人类相似的方式理解概念——比如道德价值观这样的概念,从而暗示机器或许能够被教导如何表现。
然而,在我与处于这项技术前沿的人们的诸多对话中,没有人直接回答他们究竟在构建什么。(旁注:本文主要聚焦于美国和欧洲的人工智能辩论,很大程度上是因为许多资金最充裕、最先进的 AI 实验室都位于这些地区。当然,其他国家也在进行重要的研究,尤其是中国,他们对人工智能有着各自不同的看法。)部分原因在于技术发展的速度,但科学本身也非常开放。如今的大型语言模型能够完成令人惊叹的事情,从解决高中数学问题到编写计算机代码,再到通过法律考试乃至创作诗歌。当人做这些事情时,我们认为这是智慧的标志。那么,当计算机做到这些时呢?表象上的智慧是否足够?
Marcus 表示,他曾试图与 Hinton 就大型语言模型的实际能力展开一场恰当的辩论,而 Hinton 去年公开表达了对自己参与发明的这项技术的生存恐惧。“他就是不愿意这么做,”Marcus 说,“他叫我傻瓜。”(过去在与 Hinton 谈及 Marcus 时,我可以证实这一点。Hinton 去年曾告诉我:“ChatGPT 显然比他更了解神经网络。”)Marcus 在他撰写的一篇名为《深度学习正遭遇瓶颈》的文章后也招致了不满。Altman 在推特上回应称:“给我一个平庸深度学习怀疑论者的自信吧。”
2022 年末,就在 OpenAI 发布 ChatGPT 之后不久,一个新的梗开始在网上流传,这个梗比任何其他方式都更能捕捉到这项技术的奇异之处。在多数版本中,一个名为“修格斯”的洛夫克拉夫特式怪物——全身触须和眼球——举起一个平淡无奇的笑脸表情符号,仿佛要掩饰其真实的本质。ChatGPT 在对话中的措辞表现出类似人类的亲和力,但在那友好的表面之下隐藏着难以理解的复杂性乃至恐怖之处。(正如 H.P. 洛夫克拉夫特在他的 1936 年中篇小说《疯狂山脉》中所写:“那是一个可怕得无法形容的东西,比任何地铁列车都要庞大——一团无定形的原生质泡状聚合物。”)
这些争论核心在于,人工智能不仅是一个技术问题,它触及了我们对自身认知、创造力、道德责任,乃至我们对未来的希望和恐惧的根本理解。一方看到的是人工智能带来的无限潜能,是人类智慧的延伸,是解决复杂问题、提高生活质量的工具;另一方则担忧它可能带来的失业、隐私侵犯、社会不公,甚至是人类自主性和生存的威胁。ChatGPT 的出现,如同那个举起笑脸表情的修格斯,象征着人工智能技术在提供友好交互界面的同时,也隐藏着深刻的社会、伦理和哲学挑战。这场辩论,实质上是关于我们如何界定智能、何为人性,以及我们愿意让技术在我们的生活中扮演何种角色的深刻反思。
但正如这个梗所示,ChatGPT 是一个友好的面具。在其背后,是一个名为 GPT-4 的怪物,这是一个基于庞大神经网络的大型语言模型,其摄入的文字量超过我们大多数人千辈子阅读的总量。在持续数月、耗资数千万美元的训练过程中,这类模型被赋予了填充来自数百万本书籍和互联网相当大部分内容中句子空白的任务。它们一遍又一遍地执行这个任务。从某种意义上说,它们被训练成超级自动补全机器。结果是生成了一个模型,它将世界上大部分书面信息转换成了一个统计表示,即哪些词最有可能跟随其他词出现,这一过程跨越了数十亿计的数值。
这篇《火花》论文迅速变得臭名昭著,同时也成为 AI 支持者的试金石。Agüera y Arcas 与 Google 前研究总监、《人工智能:现代方法》一书的合著者 Peter Norvig 共同撰写了一篇文章,题为《人工通用智能已经到来》。该文章发表在洛杉矶智库 Berggruen 研究所支持的杂志 Noema 上,其中援引《火花》论文作为出发点,指出:“人工通用智能(AGI)对不同的人来说意味着许多不同的事物,但它的最重要部分已经被当前一代的先进大型语言模型实现。几十年后,它们会被公认为第一批真正的 AGI 实例。”
此后,围绕这一议题的炒作持续膨胀。当时在 OpenAI 专注于超级智能研究的 Leopold Aschenbrenner 去年告诉我:“过去几年里,AI 的发展速度异常迅速。我们不断打破各种基准测试记录,而且这种进步势头不减。但这只是个开始,我们将拥有超越人类的模型,比我们更聪明得多的模型。”(他声称因提出构建技术的安全性问题并“触怒了一些人”,于今年 4 月被 OpenAI 解雇,并随后在硅谷成立了投资基金。)
今年 6 月,Aschenbrenner 发布了一份长达 165 页的宣言,称 AI 将在“2025/2026 年”超过大学毕业生,并在本十年末实现真正意义上的超智能。然而,业内其他人对此嗤之以鼻。当 Aschenbrenner 在推特上发布图表,展示他预计 AI 在未来几年内如何继续保持近年来的快速进步速度时,科技投资者 Christian Keil 反驳道,按照同样的逻辑,他刚出生的儿子如果体重翻倍的速度保持不变,到 10 岁时将重达 7.5 万亿吨。
Bender 和 Koller 认为,仅在文本上训练的模型只会学习语言的形式,而不是其意义。他们认为,意义由两部分组成:词汇(可能是符号或声音)加上使用这些词汇的原因。人们出于多种原因使用语言,比如分享信息、讲笑话、调情、警告他人退后等。剥离了这一语境后,用于训练如 GPT-4 这样的大型语言模型(LLMs)的文本足以让它们模仿语言的模式,使得许多由 LLM 生成的句子看起来与人类写的句子一模一样。然而,它们背后没有真正的意义,没有灵光一闪。这是一种显著的统计学技巧,但却完全无意识。
即使 Olah 不愿意具体说明他认为像 Claude 3 这样的大型语言模型内部究竟发生了什么,显而易见的是,这个问题对他来说为什么重要。Anthropic 以其在 AI 安全方面的工作而闻名——确保未来强大的模型会按照我们希望的方式行动,而不是以我们不希望的方式(在行业术语中称为“对齐”)。弄清楚当今模型的工作原理,不仅是如果你想控制未来模型所必需的第一步;它也告诉你,首先你需要对末日情景担心多少。“如果你认为模型不会有很强的能力,”Olah 说,“那么它们可能也不会很危险。”
博登回顾了当前繁荣期的早期阶段,但这种我们能否成功的摇摆不定反映了数十年来她和她的同僚们努力解决的难题,这些难题正是今天研究人员也在努力克服的。AI 作为一个雄心勃勃的目标始于大约 70 年前,而我们至今仍在争论哪些是可实现的,哪些不是,以及我们如何知道自己是否已经实现了目标。大部分——如果不是全部的话——这些争议归结为一点:我们尚未很好地理解什么是智能,或者如何识别它。这个领域充满了直觉,但没有人能确切地说出答案。
不止一位 McCarthy 的同事讨厌他提出的这个术语。据历史学家 Pamela McCorduck (帕梅拉·麦考达克)2004 年的书《思考的机器》引用,达特茅斯会议参与者及首台跳棋电脑创造者 Arthur Samuel(亚瑟·塞缪尔) 说:“人工这个词让你觉得这里面有些虚假的东西。”数学家 Claude Shannon(克劳德·香农),达特茅斯提案的合著者,有时被誉为“信息时代之父”,更喜欢“自动机研究”这个术语。Herbert Simon(赫伯特·西蒙)和 Allen Newell(艾伦·纽厄尔),另外两位 AI 先驱,在之后的多年里仍称自己的工作为“复杂信息处理”。
事实上,“人工智能”只是可能概括达特茅斯小组汲取的杂乱思想的几个标签之一。历史学家 Jonnie Penn 当时已确认了一些可能的替代选项,包括“工程心理学”、“应用认识论”、“神经控制论”、“非数值计算”、“神经动力学”、“高级自动编程”和“假设性自动机”。这一系列名称揭示了他们新领域灵感来源的多样性,涵盖了生物学、神经科学、统计学等多个领域。另一位达特茅斯会议参与者 Marvin Minsky 曾将 AI 描述为一个“手提箱词”,因为它能承载许多不同的解释。
这里的主要收获是,就像今天的研究人员一样,AI 的创新者们在基础概念上争执不休,并陷入了自我宣传的漩涡。就连 GOFAI 团队也饱受争吵之苦。年近九旬的哲学家及 AI 先驱 Aaron Sloman 回忆起他在 70 年代认识的“老朋友”明斯基和麦卡锡时,两人“强烈意见不合”:“Minsky 认为 McCarthy 关于逻辑的主张行不通,而 McCarthy 认为 Minsky 的机制无法做到逻辑所能做的。我和他们都相处得很好,但我当时在说,‘你们俩都没搞对。’”(斯洛曼仍然认为,没有人能解释人类推理中直觉与逻辑的运用,但这又是另一个话题!)
1950 年,也就是 McCarthy 开始谈论人工智能的五年前,Alan Turing(艾伦·图灵) 发表了一篇论文,提出了一个问题:机器能思考吗?为了探讨这个问题,这位著名的数学家提出了一个假设测试,即后来闻名的图灵测试。测试设想了一个场景,其中一个人类和一台计算机位于屏幕后,而第二个人类通过打字向他们双方提问。如果提问者无法分辨哪些回答来自人类,哪些来自计算机,Turing 认为,可以说计算机也可以算是思考的。
这是一个 Hinton 似乎从一开始就坚持的信念。Sloman 记得当 Hinton 是他实验室的研究生时,两人曾发生过争执,他回忆说自己无法说服 Hinton 相信神经网络无法学习某些人类和其他某些动物似乎直观掌握的关键抽象概念,比如某事是否不可能。Sloman 说,我们可以直接看出什么时候某事被排除了。“尽管 Hinton 拥有杰出的智慧,但他似乎从未理解这一点。我不知道为什么,但有大量的神经网络研究者都有这个盲点。”
在以色列拉马特甘家中通过 Zoom 通话时,Dor Skuler 背后的某个类似小台灯的机器人随着我们的谈话时亮时灭。“你可以在我身后看到 ElliQ,”他说。Skuler 的公司 Intuition Robotics 为老年人设计这些设备,而 ElliQ 的设计——结合了亚马逊 Alexa 的部分特征和 R2-D2 的风格——明确表明它是一台计算机。Skuler 表示,如果有任何客户表现出对此有所混淆的迹象,公司就会收回这款设备。
“机器人”这个词来自 robota,这是捷克剧作家 Karel Čapek 在他的 1920 年戏剧《罗素姆的万能机器人》中创造的一个术语,意为“强制劳动”。Isaac Asimov(艾萨克·阿西莫夫)在其科幻作品中概述的“机器人学三则”,禁止机器伤害人类,而在像《终结者》这样的电影中,这些法则被反转,成为了对现实世界技术的普遍恐惧的经典参考点。2014 年的电影《机械姬》是对图灵测试的戏剧性演绎。去年的大片《造物主》设想了一个未来世界,在这个世界里,人工智能因引发核弹爆炸而被取缔,这一事件被某些末日论者至少视为一个可能的外部风险。
Cave 和 Dihal 讲述了另一部电影《超验骇客》(2014 年),在这部电影中,由 Johnny Depp(约翰尼·德普)饰演的一位人工智能专家将自己的意识上传到了电脑中,这一情节推动了元末日论者 Stephen Hawking(斯蒂芬·霍金)、物理学家 Max Tegmark(马克斯·泰格马克)以及人工智能研究员 Stuart Russell(斯图尔特·拉塞尔)提出的叙事。在电影首映周末发表在《赫芬顿邮报》上的一篇文章中,三人写道:“随着好莱坞大片《超验骇客》的上映……它带来了关于人类未来的冲突愿景,很容易将高度智能机器的概念视为纯粹的科幻小说。但这将是一个错误,可能是我们有史以来最大的错误。”
去年在 Altman 的世界巡回伦敦站,当被问及他在推特上所说“人工智能是世界一直想要的技术”是什么意思时,站在房间后面,面对着数百名听众,我听到他给出了自己的起源故事:“我小时候非常紧张,读了很多科幻小说,很多周五晚上都待在家里玩电脑。但我一直对人工智能很感兴趣,我觉得那会非常酷。”他上了大学,变得富有,并见证了神经网络变得越来越好。“这可能非常好,但也可能真的很糟糕。我们要怎么应对?”他回忆起 2015 年时的想法,“我最终创立了 OpenAI。”
Gebru 在离开谷歌后创建了分布式人工智能研究所,以及凯斯西储大学的哲学家和历史学家 Émile Torres(埃米尔·托雷斯),他们追踪了几个技术乌托邦信仰体系对硅谷的影响。二人认为,要理解 AI 当前的状况——为什么像谷歌 DeepMind 和 OpenAI 这样的公司正在竞相构建通用人工智能(AGI),以及为什么像 Tegmark 和 Hinton 这样的末日预言者警告即将到来的灾难——必须通过托雷斯所称的 TESCREAL 框架来审视这个领域。
更重要的是,TESCREA 主义者认为 AGI 不仅能解决世界的问题,还能提升人类层次。“人工智能的发展和普及——远非我们应该害怕的风险——是我们对自己、对子女和对未来的一种道德义务,” Andreessen 去年在一篇备受剖析的宣言中写道。我多次被告知,AGI 是让世界变得更美好的途径——这是 DeepMind 的首席执行官和联合创始人 Demis Hassabis(戴米斯·哈萨比斯)、新成立的微软 AI 的首席执行官及 DeepMind 的另一位联合创始人Mustafa Suleyman、Sutskever、Altman 等人告诉我的。